Chromatic-index critical multigraphs of order 20
نویسنده
چکیده
A multigraph M with maximum degree (M) is called critical, if the chromatic index 0 (M) > (M) and 0 (M ? e) = 0 (M) ? 1 for each edge e of M. The weak critical graph conjecture 1, 7] claims that there exists a constant c > 0 such that every critical multigraph M with at most c (M) vertices has odd order. We disprove this conjecture by constructing critical multigraphs of order 20 with maximum degree k for all k 5.
منابع مشابه
The chromatic index of multigraphs of order at most 10
The maximum of the maximum degree and the 'odd set quotients' provides a well-known lower bound 4)(G) for the chromatic index of a multigraph G. Plantholt proved that if G is a multigraph of order at most 8, its chromatic index equals qS(G) and that if G is a multigraph of order 10, the chromatic index of G cannot exceed qS(G) + 1. We identify those multigraphs G of order 9 and 10 whose chromat...
متن کاملSome maximum multigraphs and adge/vertex distance colourings
Shannon–Vizing–type problems concerning the upper bound for a distance chromatic index of multigraphs G in terms of the maximum degree ∆(G) are studied. Conjectures generalizing those related to the strong chromatic index are presented. The chromatic d–index and chromatic d–number of paths, cycles, trees and some hypercubes are determined. Among hypercubes, however, the exact order of their gro...
متن کاملRegular Multigraphs of High Degree Are 1-factorizable
Chetwynd and Hilton showed that any regular simple graph with even order n and maximum degree at least \n has chromatic index equal to its maximum degree. We show how to extend this result to general multigraphs, including those of odd order. This also verifies a special case of conjectures by Goldberg and Seymour.
متن کاملChromatic Edge Strength of Some Multigraphs
The edge strength s(G) of a multigraph G is the minimum number of colors in a minimum sum edge coloring of G. We give closed formulas for the edge strength of bipartite multigraphs and multicycles. These are shown to be classes of multigraphs for which the edge strength is always equal to the chromatic index.
متن کاملAsymptotics of the total chromatic number for multigraphs
For loopless multigraphs, the total chromatic number is asymptotically its fractional counterpart as the latter invariant tends to infinity. The proof of this is based on a recent theorem of Kahn establishing the analogous asymptotic behaviour of the list-chromatic index for multigraphs. The total colouring conjecture, proposed independently by Behzad [1] and Vizing [11], asserts that the total...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Graph Theory
دوره 33 شماره
صفحات -
تاریخ انتشار 2000